中国血吸虫病防治杂志 ›› 2020, Vol. 32 ›› Issue (6): 559-564.

• 论著 • 上一篇    下一篇

土壤中氯硝柳胺降解影响因素的研究

贾悦1, 2,邢云天1,戴建荣1*,曲国立1,梁幼生1   

  1. 1 江苏省血吸虫病防治研究所、国家卫生健康委员会寄生虫病预防与控制技术重点实验室、江苏省寄生虫与媒介控制技术重点实验室(无锡214064);2 江苏省无锡市梁溪区疾病预防控制中心
  • 出版日期:2020-12-08 发布日期:2020-12-08
  • 作者简介:贾悦,女,硕士,主管医师。研究方向:寄生虫病防治与控制
  • 基金资助:
    国家重点研发计划(2020YFC1200100);江苏省公益类科研院所自主科研项目(BM2018020-3);江苏省科教强卫工程项目

Study on the factors affecting the degradation of niclosamide in the soil

JIA Yue1, 2, XING Yun-Tian1, DAI Jian-Rong1*, QU Guo-Li1, LIANG You-Sheng1   

  1. 1 Jiangsu Institute of Parasitic Diseases, Key Laboratory of National Health Commission on Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory of Parasites and Vector Control Technology, Wuxi 214064, China; 2 Liangxi Center for Disease Control and Prevention, Wuxi City, Jiangsu Province, China
  • Online:2020-12-08 Published:2020-12-08

摘要: 目的 了解灭螺药氯硝柳胺在土壤中降解的影响因素,为评价氯硝柳胺现场灭螺的环境安全提供参考依据。方法 建立土壤中氯硝柳胺含量检测的高效液相色谱法,并分析氯硝柳胺在不同含水量(10%、30%、50%、70%、90%)、不同温度[(15 ± 1)、(25 ± 1)、(35 ± 1) ℃]、不同初始浓度(1、5、10 mg/kg)及灭菌和未灭菌土壤中的降解。采用一级反应动力学方程对氯硝柳胺降解进行拟合,计算其降解半衰期。结果 随着时间延长,氯硝柳胺残留量在不同含水量土壤中逐渐降低;土壤含水量越高,降解越快,氯硝柳胺在10%~90%含水量土壤中的降解半衰期由4.258 d下降为2.412 d。在不同温度土壤中,氯硝柳胺残留量随时间延长而逐渐下降;温度越高,氯硝柳胺降解越快,氯硝柳胺在(15 ± 1)~(35 ± 1) ℃土壤中的降解半衰期由4.398 d下降为2.828 d。1、5、10 mg/kg初始浓度氯硝柳胺在土壤中的降解半衰期分别为3.212、3.333、3.448 d,氯硝柳胺在灭菌和未灭菌土壤中的降解半衰期分别为> 30 d和3.273 d。多元线性回归分析发现,土壤中微生物(P = 0.010)、含水量(P = 0.000)和温度(P = 0.002)对氯硝柳胺降解半衰期均有影响。结论 氯硝柳胺在土壤中的降解符合一级反应动力学方程,土壤中存在微生物、温度高、含水量增加可促进氯硝柳胺在土壤中的降解。

关键词: 氯硝柳胺, 降解, 土壤, 半衰期

Abstract: g author [Abstract] Objective To investigate the factors affecting the degradation of niclosamide in the soil, so as to provide the evidence for the assessment of the environmental safety in the field snail control with niclosamide. Methods A high performance liquid chromatography was established for the determination of niclosamide in the field. Then, the degradation of niclosamide was investigated in soils with different moistures (10%, 30%, 50%, 70% and 90%), temperatures [(15 ± 1), (25 ± 1), (35 ± 1) ℃], initial concentrations (1, 5, 10 mg/kg) and in sterilized and non-sterilized soils. In addition, the degradation of niclosamide was fitted with the first-order kinetics equation, and the degradation half-life was calculated. Results The niclosamide residues gradually decreased over time in soils with different moistures, and a higher rate of degradation was seen in soils with a higher moisture. The degradation half-life of niclosamide reduced from 4.258 d in the soil with a 10% moisture to 2.412 d in the soil with a 90% moisture. The niclosamide residues gradually decreased over time in soils with different temperatures, and a higher rate of degradation was seen in soils with a higher temperature. The degradation half-life of niclosamide reduced from 4.398 d in the soil with a temperature of (15 ± 1) ℃ to 2.828 d in the soil with a temperature of (35 ± 1) ℃. The degradation half-lives of niclosamide were 3.212, 3.333 d and 3.448 d in soils containing niclosamide at initial concentrations of 1, 5 mg/kg and 10 mg/kg, and > 30 d and 3.273 d in sterilized and non-sterilized soils. Multiple linear regression analysis revealed that soil microorganisms (P = 0.010), moisture (P = 0.000) and temperature (P = 0.002) affected the half-life of niclosamide degradation. Conclusion  The degradation of niclosamide in soils fits the first-order kinetics equation, and presence of microorganisms, a high temperature and high moisture may accelerate the degradation of niclosamide in the soil.

Key words: Niclosamide, Degradation, Soil, Half-life

中图分类号: